Embedding
The embedding API allows you to get a vector representation of the input to be used from machine learning models or algorithms, leveraging models like gte-Qwen2
.
API Call Parameters
input
: A string describing the sentence, such as "A white cat resting in Rome."model
: The identifier for the model used in image generation, e.g., "gte-Qwen2."
import regolo
regolo.default_key = "<YOUR_REGOLO_KEY>"
regolo.default_embedder_model = "gte-Qwen2"
embeddings = regolo.static_embeddings(input_text=["A white cat resting in Rome", "A white cat resting in Paris"])
print(embeddings)
import requests
import json
url = 'https://api.regolo.ai/v1/embeddings'
headers = {
'Authorization': 'Bearer YOUR_REGOLO_KEY',
'Content-Type': 'application/json'
}
data = {
"prompt": "A white cat resting in Rome",
"model": "gte-Qwen2",
}
response = requests.post(url, headers=headers, data=json.dumps(data))
if response.status_code == 200:
with open("./embedding.json", 'w') as _file:
json.dump(response.json(), _file)
else:
print("Failed embedding request:", response.status_code, response.text)
curl -X POST https://api.regolo.ai/v1/embeddings
-H "Content-Type: application/json"
-H "Authorization: Bearer YOUR_REGOLO_KEY"
-d '{
"model": "gte-Qwen2",
"input": "The quick brown fox jumps over the lazy dog"
}'
For the exhaustive API's endpoints documentation visit docs.api.regolo.ai.